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Abstract 
Irregularities in F0 tracking such as sudden jumps or the 
halving/doubling of F0 often arise from consonantal 
perturbations, voice quality modulations, or environmental 
noise. These irregularities are typically visually apparent to the 
researcher, but fixing such errors is a time-intensive process 
even with algorithms that provide heuristic assessments of 
potential errors. In this paper we describe PitchMendR: an R-
based interactive visualization tool to rapidly identify and fix 
irregularities. We discuss the main features of the tool and a 
proof-of-concept analysis of how it can be used to reduce noise 
in a dataset for statistical modeling. 
Index Terms: pitch, intonation, pitch tracking, f0  

1. Introduction 
Reliable F0 tracking is crucial for speech research, especially 
for the phonetics and phonology of intonation. Irregularities in 
F0 measurement, whether from the F0 extraction algorithm or 
from disturbances in a recording itself, add noise to time-series 
analyses and can make identification of a meaningful signal 
from a limited set of data more difficult. While advances have 
been made in creating effective algorithms for extracting F0 
samples [1,2] and for flagging potential irregularities [3], there 
is still room for improvement on what to do with the remaining 
irregularities. In this paper, we describe an R-based graphical 
user interface (GUI) for rapidly visualizing and “mending” 
pitch contours containing irregularities in F0. 

We focus our attention on two types of F0 irregularities: 
octave-jump errors (also known as pitch halving/doubling) and 
perturbation errors, with examples of each shown in Fig. 1. 

 
Figure 1: Spectrogram and pitch contour of “Only 

Madelyn ran a mile?” Circled: perturbation from a 
transient environmental noise; Boxed: halving error. 

Octave-jump errors occur when the measured F0 samples 
are a harmonic or subharmonic of the F0, e.g., produced 110Hz 
may be measured as 220Hz or 55Hz. While some instances of 
octave-jump errors are faithful to the acoustic signal, such as 
genuine instances of waveform period doubling from non-
modal phonation [4-6]. While these errors can be mitigated by 
adjusting the parameters used in the F0 extraction algorithm [7], 
they can nonetheless remain in large datasets, making it 

difficult to identify meaningful changes in F0 for intonation. 
Perturbation errors are discontinuities or distortions in the F0 
contour due to segmental transitions or transient events in the 
acoustic signal. For example, the release from an oral stop can 
cause slight distortions in the pitch contour (see also [8] for 
nasal-vowel perturbations). Non-linguistic transient 
disturbances such as environmental noises can also perturb the 
F0 contour. These kinds of perturbations are particularly 
common in production studies where the recording 
environment cannot be controlled, such as in online studies 
where people can participate from home. 

While materials for a production study can often be 
phonologically controlled to be amenable to F0 extraction, such 
as by prioritizing sonorant segments, this is not always an 
option. In work on the role of intonation on adjectival scales 
[9], some adjectives are amenable to F0 tracking (such as 
brilliant) while others present a challenge (as in ecstatic). 
Similarly, while some perturbation errors might be fixed with 
smoothing methods such as running-median smoothing, it 
appears inevitable that some F0 irregularities will remain. 
When it comes to working with the errors, the slowest but most 
thorough option involves annotating the extracted F0 time-
series and selectively removing problematic samples or files. A 
faster option is to use an automated method such as [3] to flag 
potential errors, then use a heuristic to decide whether a file is 
likely unusable for an analysis based on the number of potential 
errors (e.g., remove files with >2 errors). While convenient, this 
can reduce the amount of usable data for an analysis and may 
require more data to be collected to supplement the lost data. In 
settings where data is difficult to acquire (e.g., in a fieldwork 
setting), operationalizing an exclusion criterion this way may 
make already-scarce data even harder to come by.  

A compromise between the two approaches would be to 
manually inspect only those files that have been identified as 
potentially unusable, allowing the researcher to make the final 
determination on how to handle such cases. Even so, the 
number of problematic files can be quite large depending on the 
scale of the study; for a production study of 40 participants with 
144 trials each, even 10% of files flagged as potentially 
unusable would still yield 576 files to inspect.  Yet, errors are 
nonetheless visually apparent and can be readily confirmed 
with additional comparison to the audio signal. 

2. PitchMendR 
We introduce an application to fill the gap between the 
identification of F0 measurement errors and annotating, 
removing, or fixing such errors; a screenshot is shown in Fig. 2. 
PitchMendR is an open-source Shiny app written in R [10,11] 
that can be used to quickly plot time-series values. The plotted 
contours are interactive and individual measurement points or 
groups of points can be selected and marked for removal. 
Where there are clear cases of pitch halving or doubling, these 
values can be multiplied/divided by two to correct for the error.  
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While developed with F0 values in mind, any time-series 
data can be used (e.g., formant trajectories, voice quality 
measures like H1*-H2*, or intensity). The app includes a 
reworked implementation of the algorithm in [3] which runs an 
estimated 37 times faster, allowing for datasets to be quickly 
flagged for potential errors. Points can then be colored by 
whether they’re flagged or not, or alternatively, colored by 
different parts of the dataset (e.g., intensity, label from a 
TextGrid interval, or experimental condition). The GUI also 
provides a notepad to record observations and a series of 
buttons to quickly tag files with predetermined values (e.g., 
Unusable or Good Example). The app is available through an R 
package available at https://github.com/tsostarics/PitchmendR 
which can be run locally on a user’s machine (henceforth the 
local version) or through a web-hosted version with more 
limited functionality (henceforth the web version), which is 
available with a demo file containing 36 contours at 
https://tsostarics.shinyapps.io/PitchMendR/. 

 Importantly, the output of the app is non-destructive: it 
does not change the original F0 values, meaning no data is lost 
or modified in the annotation process. Rather, a collection of 
new columns that describe the transformations needed to create 
the “mended” contours from the original F0 values are added to 
the table of data. A numeric transformation column is used to 
record multiplicative factors for correcting doubling/halving 
errors (where a factor of 1 indicates no correction needed) and 
a separate binary column is used to record annotations of 
whether a point should be kept or removed. The mended 
contours are thus equal to the original F0 values times the 
multiplicative factor and then filtered to retain only those points 
not explicitly marked for removal. 

This non-destructive annotation process helps guard against 
academic dishonesty: it would be suspicious for a large dataset 
to have no irregularities without mentioning any annotation 
process. Researchers using PitchMendR can thus share not only 
the original F0 values, but also the columns containing the 
transformation values and their notes to reproduce the mended 
contours—all recorded in the same dataset. In the process, the 
criteria for how errors are handled can be made explicit in the 
same way criteria for other types of phonetic annotations are. In 
cases where there is researcher disagreement about how one 

class of error should be handled, visualizing the contours with 
and without these non-destructive transformations can serve as 
a basis for discussion and adjudication.  

PitchMendR is intended as a streamlined annotation tool 
to supplement workflows with Praat and R. Additionally, the 
focus of this app is on working with large datasets of pitch 
contours that have already been extracted. That is, it is not a 
tool for resynthesis (c.f. PSOLA in Praat [12]) nor a tool for 
preprocessing pitch extraction/measurement. It is also not an 
analysis tool, meaning that students and researchers will still 
need to learn and use valuable skills in signal processing and 
data handling (i.e., smoothing should be thoughtfully done by 
the researcher, not quickly by a button). Students working as 
research assistants can be trained to use the app, though we do 
not recommend “naïve” annotation done without a firm 
understanding of phonetics related to the voice source and 
especially the effects of voice quality on octave-jump errors.  

The local version of PitchMendR allows users to play audio 
files from within the app when inspecting an individual file, or 
even interface with Praat, allowing the user to open audio files 
and TextGrids for further inspection using a single “Open in 
Praat” button without needing to navigate additional menus. For 
security reasons, the web app does not have this functionality 
and is primarily restricted to uploading a spreadsheet, making 
annotations, then downloading the annotated spreadsheet 
containing new columns. The app also keeps track of which 
files have already been inspected, allowing users to keep track 
of their progress across annotation sessions. 

2.1. Proof of Concept 

We use recordings elicited from an imitation paradigm to show 
how PitchMendR can be used to reduce non-meaningful 
variability and avoid data loss. In this study, speakers listened 
to an auditory model sentence such as “Only Oliver rode 
away?” with different resynthesized pitch contours and were 
tasked with imitating the pitch contour they heard with a new 
sentence such as “Only Harmony ran a mile?” or “Only 
Madelyn made a move?”. The experiment had 144 trials, which 
were split evenly between three broad tune classes (falls, rises, 
and rise-fall-rise), each of which had four distinct (but 
potentially not linguistically contrastive) trajectories. For this 

Figure 2: Screenshot of interface using the example from Fig. 1. Regions in red are flagged as potential errors, and points 
marked for removal do not contribute to the sample-to-sample contour. Points can be selected directly from the plot (1) to be 

marked for removal, halved, or doubled (2). Tools are provided to make annotations (3) before moving to the next file (4).  
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paper we focus only on the imitations of the four rising pitch 
trajectories (=48 trials per participant). We show data from four 
speakers (two identified as male, two female), with two having 
many files initially flagged as unusable (21 and 18 out of 48) 
and two with fewer flagged files (5 and 2).  

Using PitchMendR to annotate and repair F0 contours is not 
the only way to reduce the prevalence of F0 irregularities in a 
dataset. Although different F0 sampling algorithms may be 
differentially robust to different types of errors, all algorithms 
will produce some errors. Fig. 3 shows extracted F0 samples 
for 192 rising contours using Praat’s raw autocorrelation 
algorithm [12] and STRAIGHT’s algorithm as implemented in 
VoiceSauce [2,13] using speaker-specific pitch ranges.  

 
Figure 3: F0 Contours from two different algorithms. 

Both algorithms show some amount of noise from 
abrupt jumps and evident halving errors. 

In the remainder of this section, we will show how 
variability in sample-to-sample F0 differences (henceforth: F0 
jumps) can be reduced through the annotation process. We will 
begin with a visual comparison of (1) the original F0 contours 
compared to the mended contours, then (2) how variability in 
jumps as shown through the first derivative of F0 with respect 
to time is reduced. Finally, we will show how the results of 
statistical modeling using generalized additive models (GAMs) 
and clustering methods can change depending on the dataset. 

Fig. 4 shows the original pitch contours (from Praat’s 
autocorrelation output, extracted with PraatSauce [14]) and the 
mended pitch contours using PitchMendR. All contours in Fig. 
4 are smoothed using five-point running median smoothing, 
though one can observe that some errors persist even after 
smoothing. Of the 192 rising contours, 46 were flagged as 
containing enough errors to exceed the exclusion criterion 
described in [3]; for this dataset, this would be a loss of 24% of 
the data—nearly one participant’s worth of rising contour trials.  

 
Figure 4: Smoothed time-normalized original vs. 

mended pitch contours. F0 is shown as semitones from 
speakers’ median pitch. Files initially flagged as 

unusable are shown in blue. 

In the context of the experiment, the pitch excursions of 
these rises are quite large: upwards of two octaves for some 
speakers (e.g., a rise from 110Hz to 440Hz). Given the scale of 
these excursions, we can hypothesize that speakers may shift 
into a higher register or adopt different laryngeal strategies to 

reach these high pitch targets, which will likely incur a change 
in voice quality (see [6, 15] regarding voice quality). In line 
with this prediction, we can observe from the left side of Fig. 4 
that most of these errors are likely halving errors, which can be 
corrected by doubling the frequency values in PitchMendR. 
Most of the corrected perturbation errors were due to transient 
environmental noises (e.g., mouse clicks), oral stops (the /d/ in 
Madelyn made), or frication (the /h/ in Only Harmony). 
Glottalization of the utterance initial vowel also tended to cause 
F0 jumps. Using PitchMendR, all but one file was recoverable.  

Whereas Fig. 4 suggests that the overall shapes of the rising 
contours are less noisy than before, we might also consider 
whether the variability in F0 jumps has also been reduced. 
Thus, we turn from F0 over time to the change in F0 over 
time—i.e., the first derivative of F0 with respect to time—
which we normalize to the sampling period. For example, if a 
pair of adjacent samples have a change in F0 of 4 semitones, 
but they are separated by 40ms (4 times the sampling period of 
10ms), then the normalized F0 jump is 1 semitone. At issue now 
is the variability of these F0 jumps in three datasets: the 
original dataset with no files removed, the dataset remaining 
after removing files flagged as unusable, and the mended 
dataset. Fig. 5 shows the change in F0 for each dataset. 

 
Figure 5: F0 jumps as change in semitones over 10ms, 

labeled by dataset (range of F0 jumps in brackets). 
The y-axis is zoomed in to [-4, 4], meaning that more 

extreme F0 jumps go beyond the plot’s bounds.   

Fig. 5 shows that while the majority of extreme F0 jumps 
in the original dataset can be eliminated by simply removing 
those files, there remain some extreme F0 jumps. The mended 
dataset not only includes the files that would have been 
removed, but also shows reduced variability in F0 jumps. The 
reduced variability seen in the time-series from Fig. 4 (F0 over 
time) and Fig. 5 (change in F0 over time) may should also affect 
statistical analyses using these datasets. For our analyses, recall 
that this experiment had four distinct rising trajectories that 
participants imitated. We model the imitated rising contours 
shown in Fig. 4 using GAMs [16,17] for each speaker and 
trajectory using separate models using each of the three 
datasets. We restrict our discussion to one speaker due to space 
limitations. Fig. 6 shows the model predicted contours for the 
speaker with the greatest number of files flagged as unusable. 

Figure 6: GAM model predictions for the four rising 
trajectories from one speaker. The inlaid panel is zoomed 
in on the region from 65% to 85% of the normalized time. 
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From Fig. 6 we can observe that generally the model is quite 
robust in identifying the overall shape of the rising contours. 
However, there are slight differences in the model predictions 
when comparing the across the four trajectories. Fig. 7 shows 
the difference between two trajectories for this speaker; regions 
where these trajectories do not significantly differ from one 
another would yield a difference at or near zero. 

 
Figure 7: Differences between two selected 

trajectories with 95% confidence intervals. The inlaid 
panel shows the two contours between 65% and 85% 
of the normalized time. The differences can be read as 

the solid purple line minus the dashed blue line. 

We can also investigate how the mending process affects 
the results of clustering analyses using F0 contours, such as 
those in [18,19]. One possibility is that the number of optimal 
clusters may vary depending on the amount of data available 
and the variability within the dataset. Fig. 8 shows the optimal 
number of clusters (assessed via the Calinski-Harabasz index 
criterion) for each of our illustrative datasets via K-means 
clustering for longitudinal data [20]. Here, each contour has 
been downsampled to use 30 equally spaced points for each 
contour. Based on the results in Fig. 8, we can observe that 
omitting files with an automated criterion did not change the 
number of clusters nor their apparent shape compared to the 
original dataset containing F0 irregularities. However, when 
these files are recovered in the mended dataset, we can see that 
the added number of observations for this sample of participants 
shows an additional cluster. 

 
Figure 8: Optimal clusters for each dataset, with the 

average contour within each cluster overlaid. 

3. Discussion 
Mending pitch contours with PitchMendR provides two 

benefits. First, we were able to recover a large amount of data 
that would otherwise have been discarded from the analysis 
dataset. Second, we reduced the variability in the F0 jumps 
between adjacent samples. By doing so, we not only improve 
our statistical power by virtue of having more data at our 
disposal, but the mended dataset is also less noisy. These 
improvements are seen even when the contours to be modeled 
are smoothed, as seen in Fig. 4. Moreover, as seen in Fig. 7 and 
Fig. 8, depending on the decisions made when addressing F0 
irregularities, the results of the statistical analysis can change in 
small or substantial ways. 

While mending contours can help overall, it is nonetheless 
an annotation process that takes time to carry out rigorously. 
Thus, it is likely most fruitful to focus annotation efforts on files 
where automated methods have detected a high 
number/likelihood of F0 irregularities. It should nonetheless be 
noted that the goal of such efforts is not necessarily to coerce 
all recordings into a mended form: sometimes recordings do 
need to be thrown out for one reason or another.  

The distinctions between some Intonational features can be 
subtle, and so while PitchMendR can help with removing 
distortions from environmental perturbations, care should also 
be taken not to remove too many points. A key example of this 
lies in regions of a contour containing high curvature, which 
require many points to adequately depict the curve through a 
series of line segments between discretized points. While tone-
sequence models for intonational phonology, such as 
Autosegmental-Metrical theory [21], focus on the linear 
sequence of tones and their corresponding (relative) F0 targets, 
it has also been shown that intonational features can differ in 
the overall shape between points [22]. For example, the L+H* 
and L*+H pitch accents in English [23] and German [24] differ 
not only in the alignment of the accentual peak (early vs. late) 
but also in whether the shape is “domed” or “scooped.” Misuse 
of PitchMendR by removing too many points along these 
domed/scooped trajectories may limit one’s ability to reliably 
characterize their curved shapes. Again, we note that because 
the output of PitchMendR is non-destructive, cases where care 
has not been taken in the annotation process can be 
straightforwardly identified through comparison of the original 
and mended contours, which exist in the same dataset. 

4. Conclusions 
Despite a variety of F0 extraction algorithms and smoothing 
techniques to minimize the prevalence of F0 measurement 
irregularities, there is not currently a good way to quickly 
remove the irregularities that remain in a dataset. We have 
introduced an open-source tool called PitchMendR that 
capitalizes on how irregularities are typically visually salient. 
Using a responsive GUI, researchers can quickly visualize, 
identify, and repair pitch contours that contain octave-jump or 
perturbation errors. These “mended” contours are derived from 
a series of non-destructive transformations, which help guard 
against data loss as well as careless annotations.  

We also compared the variability of F0 contours across 
three datasets from an imitation task: a dataset with no measures 
taken to treat irregularities, a dataset where many files were 
removed after being flagged with automated methods, and a 
dataset where PitchMendR was used to address the 
irregularities. We showed reduced variability (i.e., noise) in the 
data while also recovering a large amount of data in the 
mending process that would normally have been lost when 
using automated exclusion criteria. Finally, we showed that the 
results of statistical methods, such as GAM modeling and 
clustering analyses, can vary depending on how irregularities 
are handled within the dataset. We conclude that PitchMendR 
can be a valuable tool for researchers working with F0 data, 
helping to recover hard-earned data that would otherwise be 
discarded. 
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