Testing the Locus of Speech Act Meaning in English Intonation Northwestern **Thomas Sostarics & Jennifer Cole** Northwestern University, Department of Linguistics

Department of Linguistics

tsostarics@u.northwestern.edu jennifer.cole1@northwestern.edu

Background

Farkas and Bruce(2010 Farkas and Roelofsen

Falling and rising declaratives in American English typically convey either an assertion or a question, respectively

Shallow rises are more likely than steep rises to be interpreted as an assertion, but is this a phonological contrast in the pitch accent or phonetic variation in the scaling of the boundary tone?

Hypotheses and Predictions

How likely are assertion interpretations as we vary accentual and ending pitch?

If the edge tones matter, we predict higher % Telling when ending pitch is lower

H-H% If both matter, we predict an interaction: % Telling further increases when F0 contour is L-L% closest to H*L-L%

ICPhS

If the pitch accent matters, we predict higher % Telling when accentual pitch is higher

Tonal Center of Gravity reflects the Barnes et al. (2012;2021)• weighted overall pitch for a time span

Questions

Which part of the contour matters when interpreting a declarative utterance as an assertion or question?

Is it only where it falls/rises towards?

Or rather where it falls/rises from?

Credible evidence for the predicted negative effect of ending pitch variation but slight evidence for **counterintuitive** negative effect of accentual pitch

Globally higher rises and falls have lower % Telling: can TCoG explain why?

Results

Exp. 2 (Early Falls)

We recruited participants from Prolific (n=110, Exp1:56 and Exp2:54)

Participants judged declarative utterances on whether the speaker was **asking** them something (=question) or **telling** them something (=assertion)

When the fall from the peak is earlier, it sounds natural and has lower TCoG

Modeling response variation with TCoG shows a sigmoidal response function. Model performance improves when global shape is included

The counterintuitive negative effect of accentual pitch is in fact predicted by TCoG: higher accentual pitch raises **TCoG**, yielding slightly lower % Telling

TCoG-F (semitones from 90Hz)

Conclusions

Rising

Question/Assertion interpretation is driven by variation in ending pitch, and not accentual pitch: higher ending pitch is less likely to receive a Telling response.

Stimuli cross a 5-step accentual pitch continuum with a 5-step ending pitch continuum. Participants hear 5 repetitions of each step of the continuum (total trials=125)

Q/A contrast doesn't seem to involve the pitch accent. Prior work predicting H*H-H% as more assertive than L*H-H% not supported.

A Tonal Center of Gravity account helps explain initial counterintuitive effect of pitch accent, motivating a second experiment which eliminated the effect.

To avoid comparisons between trials, participants count aloud by 2s between Schiefer & Batliner(1991)-Steffman et al.(2021)

successive trials

TCoG perspective suggests a more probabilistic relation to phonetic gradience.